
N95- 18183

1994 NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

JOHN F. KENNEDY SPACE CENTER

UNIVERSITY OF CENTRAL FLORIDA

ENHANCEMENTS TO THE KATE

MODEL-BASED REASONING SYSTEM

s/7-.__.._s

3s
F- _'/

PREPARED BY:

ACADEMIC RANK:

UNIVERSITY AND DEPARTMENT:

NASA/KSC

DIVISION:

BRANCH:

NASA COLLEAGUE:

DATE:

CONTRACT NUMBER:

Dr. Stan J. Thomas

Associate Professor

Wake Forest University

Department of Mathematics

and Computer Science

Engineering Development

Artificial Intelligence

Peter Engrand

August 12, 1994

University of Central Florida

NASA-NGT-60002 Supplement: 17

485

Acknowledgements

I would like to thank Peter Engrand of NASA as well as Charlie Goodrich, Bob

Merchant and Steve Beltz of INET for their cooperation and technical support this

summer. I would also like to extend both compliments and thanks to Dr. Anderson,

Dr. Hosler and Ms. Stiles for their professional management of the summer faculty

program.

486

iIij

Abstract

KATE is a model-based software system developed in the Artificial Intelligence

Laboratory at the Kennedy Space Center for monitoring, fault detection, and control

of launch vehicles and ground support systems. This report describes two software

efforts which enhance the functionality and usability of KATE. The first addition, a

flow solver, adds to KATE a tool for modeling the flow of liquid in a pipe system.

The second addition adds support for editing KATE knowledge base files to the

Emacs editor. The body of this report discusses design and implementation issues

having to do with these two tools. It will be useful to anyone maintaining or

extending either the flow solver or the editor enhancements.

487

Summary

The Knowledge-based Autonomous Test Engineer (KATE) system is a model-

based software system which has been developed in the Artificial Intelligence

Laboratory at the Kennedy Space Center over the last decade. It is designed for

monitoring, fault detection, and control of launch vehicles and ground support

systems.
This report commences with a brief introduction to the fundamental principles

behind the operation of KATE. Emphasis is placed on the structure and importance

of KATE's knowledge-base. We then describe two software efforts implemented this

summer to enhance the functionality and usability of KATE. The first addition, called

a flow solver, adds to KATE a tool for modeling the flow of a non-compressible liquid

in a system of pipes. The program was developed in C++ in such a way that it can
be called from within KATE or used independently as a tool for solving flow

problems. The second enhancement is a collection of Emacs-LISP functions which

comprise a major editing mode for working with KATE knowledge base files. These

functions add domain-specific features to Emacs in order to ease the task of building

KATE models.

The body of this report discusses design and implementation issues having to

do with these two software systems designed and prototyped this summer. It will

be useful to anyone maintaining or extending either the flow solver or the editor

enhancements.

488

I_i

Section

1.1

1.2

1.2.1

1.2.1.1

1.2.1.2

1.2.1.3

1.2.1.4

II

2.1

2.2

2.3

2.4

2.5

III

3.1

3.2

3.3

W

TABLE OF CONTENTS

Titl_._g

AN INTRODUCTION TO MODEL-BASED REASONING

Basic Principles

Knowledge-bases

The KATE Knowledge-base

High level system knowledge

Middle level system knowledge

Low level system knowledge
Database files

THE FLOW SOLVER

Problem Description
Newton's Method

The SGOS Flow Solver

Implementation of the Flow Solver
Future Work

THE EMACS KATE MODE

Design Specifications

Implementation
Future Work

REVIEW

489

Figure

1-1

2-1

2-2

2-3

LIST OF ILLUSTRATIONS

._tle

Overview of Model-based Reasoning
Abstract Flow Network

Example Flow Network

Comparison of Results

490

_]|i | i

M_J

AN INTRODUCTION TO MODEL-BASED REASONING

1.1 BASIC PRINCIPLES

The basic concepts of model-based reasoning are very simple. A computer simulation

model of a physical system is constructed from a knowledge-base representing the

components of the system and their interconnections. The physical system, which is

assumed to have numerous sensors, is put into operation. As the physical system

operates, sensor readings are compared to their predicted values from the simulation

model. As long as there are no significant discrepancies between predicted values

and actual sensor readings, nothing is done. When a significant discrepancy occurs,

the model-based reasoning system can carry out whatever actions are needed to alert

a human that a problem has occurred. This aspect of model-based reasoning is

simply known as monitoring.

If model-based reasoning systems were only capable of monitoring, they would be of

limited utility. Fortunately, model-based reasoning systems such as KSC's

Knowledge-based Autonomous Test Engineer (KATE) have other abilities. Among

the most interesting is failure diagnosis. Once a significant discrepancy has been

identified in the monitoring stage, KATE utilizes its internal representation of the

physical system in an effort to identify failures which could have led to the conflict

between predicted values and actual sensor values. A significant difference between

this reasoning process and traditional process control techniques is KATE's ability to

include sensors themselves in the diagnostic process. A high-level overview of the

monitoring process and its relation to diagnosis is illustrated in Figure 1-1.

In addition to their ability to monitor and diagnose complex systems, model-based

reasoning systems such as KATE have the potential for several other very useful

functions. If the computer has the ability to issue commands to the physical system,

it should be possible to describe a desired state of the physical system and have the

reasoning system determine what commands to issue to achieve that state. If the

physical system has redundant pathways and components, as is frequently the case

in NASA systems, the model-based system can often determine how to utilize

redundant hardware in order to continue operation of the physical system after some

component or components have failed. It is also possible to have such a model-based

reasoning system construct an explanation of the steps taken to identify a failed

component or to achieve a specific objective.

In addition to their operational use, model-based reasoning systems have great

potential as training tools. An instructor can create failure scenarios in the simulation

environment to test the student's ability to respond to failures of the actual hardware.

491

Another potential use for model-based reasoning systems is to

adequacy of the sensors in a complex system before it is built. For a

introduction to model-based reasoning see [1].

determine the

more in-depth

(, Knowledge-base ,

• jI

I I

Computer

Simulation

Model

Predicled Values

No __, monitorin_

I Physical 1

System

. SensIr Values

status maintenance,

etc.

]-

V

Figure 1-1. Overview of Model-based Reasoning

1.2 KNOWLEDGE-BASES

In order for a model-based reasoning system to function, it must have information

about the structure and operation of the physical system to be modeled. We call such

information about the real world the system's knowledge-base. As characterized in

[2] for the KATE system:

The KATE knowledge base contains vital information about the physical

system that KATE is controlling or monitoring. This information is the

raw material used by KATE to construct a simulation model that mimics

the system's structure and function. Objects in the model have a one-to-

one correspondence with parameters, commands, sensors, and other

components in the physical system. The knowledge-base is referenced by

492

KATE in the same way that schematic diagrams and operating

specifications are used by system engineers.

1.2.1 THE KATE KNOWLEDGE-BASE. In order to lay the groundwork for topics

discussed later in this report, we elaborate upon the organization of KATE's

knowledge-base--a three-level hierarchical structure. Such hierarchical structures are

typical of the organization of knowledge-bases used for model-based reasoning

systems.

1.2.1.1 High level system knowledge. The so-called "top-level" of KATE's

knowledge base represents information about very broad classes of system

components. For the systems with which KATE is currently used, these classes are

commands, measurements, components, pseudo objects, display function designators

and so called synchronization objects. For operational efficienc3¢ generic knowledge

about the structure and function of these high level classes of objects is hard-coded

into the C++ implementation of KATE. This means that changes to KATE's top-level

knowledge of system component classes require possibly extensive modifications to

the source code. Fortunatel3¢ such changes occur infrequently.

1.2.1.2 Middle level system knowledge. The so-called "mid-level" of KATE's

knowledge-base represents information about specific types of system components.

For example, this class contains knowledge about components such as pumps, relays,

values, and tanks in addition to pseudo objects such as pressures and admittances.

Each middle level class is an example of some top-level class previously defined and

inherits properties from the top-level class. Again, for efficiency reasons, the mid-

level of KATE's knowledge-base is represented in C++ header and source code files

which are compiled into the corpus of KATE at compile time. However,

modifications to the content of this level have no effect on the body of the KATE

system, only the classes of components available for subsequent modeling. This level

of the knowledge-base has a regular, predictable, organization and syntax which

makes it easy to extend.

1.2.1.3 Low level system knowledge. The lowest level of KATE's knowledge-base
is stored in what are referred to as "flatfiles". This is the information about the actual

physical components in a system being modeled. Each object at this level is an

instance of some mid-level class and inherits properties from that abstract class, which

inherits knowledge from its parent class.

The flatfiles representing low-level knowledge are text files (ASCII files) with a well-

defined keyword-based syntax. They are read by KATE at run-time in order to

construct an internal representation of the physical system to be modeled.

493

1.2.1.4 Database files. The current practice of those building KATE knowledge
bases is to work with a collection of what we will refer to as "database" or .db files.

A single real-world system may be modeled using dozens or hundreds of database

files. Under control of what we will refer to as a "project" or .kb file, collections of

database files are compiled into a single "flatfile" representing a single KATE model.

Database and project files are the files which the model builder directly constructs and

edits using a text editor such as Emacs. They are discussed in more detail in Section
III of this document.

V

494

! | I

M,i

II

THE FLOW SOLVER

2.1 PROBLEM DESCRIPTION

The first KATE enhancement developed this summer is known as the "flow

solver". It adds to KATE the ability to model fluid flows in a network of pipes by

specifying the connectivity, pipe admittances, external pressure values and static

head pressures for the pipes composing the network. The internal pressures and

flows in the pipes are calculated in such a way as to conserve flow at each interior

node in the network while simultaneously meeting the boundary conditions

imposed by the external pressures. Conservation of flow laws lead to a system of

non-linear equations. This non-linearity makes the flow solver a challenging

program to implement. The size of the network depends only upon the number of

interior nodes in the network and can be of any size--however performance of the

flow solver slows as the network grows.

Even though the flow solver code is expected to be used initially for modeling

flow in the shuttle liquid oxygen (LOX) loading system, it applies to any flow

system meeting the following fundamental requirements:

o The fluid in the system is assumed to be incompressible.

o The network is always full of liquid.

o The interior unknown pressures to be solved for, the Pi, are

pressures at the junction of exactly three pipe sections.

o The fundamental flow law for a pipe with ends denoted k and I is
D

FLOW = A k,1* "_/-Pk-PI

where Ak._ is the admittance of the pipe section from k to I, Pk and

P_ are the pressures at the ends of the pipe and

= sign(X) * vrIXl, is herein referred to as the directed

square root of X.

o There is conservation of flow at every junction. That is to say that

the flow into each junction must be equal to the flow out of that

junction.

o The admittance for every pipe is known in advance.

o The pressure at every "external" pipe end is known in advance.

In Figure 2-1 we illustrate the general form of the systems our flow solver can solve.

Even though the connection topology is very simple, many real-world piping systems

can be represented in this form. In the figure, the Pi represent known pressures

495

whereas the PTj represent unknown pressures to be solved for by the flow solver. The

Aj,j represent known admittance values. In order to simplify our diagrams and the

discussion we do not include references to static head pressures induced by height

differences between pipe ends; however our computer programs incorporate head

pressure data in a straightforward way. Although we refer primarily to solving for

unknown pressures in this figure and in subsequent discussion, it should be obvious

that solving for the flow in a pipe of known admittance is trivial (see equation above)

once the two end pressures are known.

Pl (AI,_I) (A._2,73) Pn

P3

Figure 2-1.

• o o

P?3 P? (m-I)

A73,4 (Alm-l,n-

P4 Pn-2

Abstract Flow Network

P?ra (A?mor_)

I
(_ _?_.n-])

/
Pn- 1

In Figure 2-2 we show an example network with seven known pressures and five

unknown pressures. The pressure and admittance values shown were arbitrarily

chosen but are illustrative of the kinds =of values that might be encountered in a real

pipe system.

i00 (85) P_1 (92) P?3 (103) P?4 (94) P_s (90) 40

55)

15

P?_ (112)

I I
/fief
Figure 2-2.

48) (60)

7 [i0

Example Flow Network

72)

5

For a system with m unknown pressures out of a total of n pressures altogether,

finding the m unknown pressures leads to solving a system of the form

496

= d
x.._../

D D D

A,.,* _+A,.2* _-P2+...+A,,,,* _P-_I-P, : 0

O D "'" v,=D'P/-P'-_-PnA2,1* _+A2,2" _+ +A2,n, = 0

Am,l* +Am,2* +...+A,_,* = 0

for unknown pressures Pv P2, -.., P=. In the type of pipe systems we are restricting

ourselves to there will only be three non-zero entries in each row but in more general

systems, with less restricted interconnections, more non-zero terms would occur.

Nonetheless, the problem of determining the unknown pressures in a pipe network

reduces to solving systems of non-linear equations of this form, systems which have

no closed-form algebraic solution.

2.2 NEWTON'S METHOD

The most commonly used method to solve systems of non-linear equations is the

multi-dimensional variant of the well-known Newton's method for finding roots of

equations. We briefly review the familiar one-dimensional Newton's method and then

describe the higher dimension variant. For an in-depth discussion of these methods,

see [3].

Assume that we have a known function f(x) for which we want to find x values for

which f(x) = O. Within some neighborhood of x, f can be expanded in a Taylor's series

f(x + 3) =f(x) +f'(x) 3 + f'(x---_) 3 +...
2

By neglecting the 5X 2 and higher terms we obtain a simple equation for the

corrections 6X that move f(x) closer to 0, namely the well known recurrence relation

f(_)
Xi. 1 = X i - __

fl(x i)

which is so widely used for iteratively finding roots of non-linear functions.

The multi-dimensional variant of Newton's Method is based on the same principle,

the primary difference being the calculation of the derivative of the function. Assume

we are given a system of n functional relations f i in variables x v xv...,x,, denoted

fi(xvxv...,x_) = 0, for i=l,2,...,n. Let X denote the vector of unknown x_ values. Then

in some neighborhood of X, each f_ can be expanded in a Taylor's series

497

N

x +sx) + +o(tx 2)
j--1%

By neglecting the 6X 2 terms and higher we obtain a set of linear equations for the

corrections 6X that move all the function values closer to 0 simultaneousls_ namely

where

?1

]_ A,j ,Sxj=Bi
j=l

so the problem reduces to one of solving a linear system A(Sx) = B and updating X

iteratively until convergence. The matrix A, known as the Jacobian, is a matrix of

partial derivatives which plays a role analogous to that of f'(x) in the one-dimensional
case.

A number of observations are in order at this point. First of all, solving a system of

non-linear equations by this method is an iterative process. At each step, a linear

system must be solved in order to determine the changes to be made to the elements
of the vector X. Fortunately; for the class of network flow problems we want to solve,

it is possible to arrange the equations in such a way that the system to be solved at

each step is tridiagonal. Solving a tridiagonal system of linear equations can be done

very efficiently. The process only grows in time linearly with the number of
unknowns. Second135 Newton's method converges very rapidly and predictably as

long as the initial X vector values are within a "reasonable" neighborhood of the

solution vector. If the initial X vector does not meet this condition then convergence
is unreliable.

At this point in our work we had some difficulty finding a reliable heuristic for

obtaining good starting values to use for Newton's method. Fortunately a fast,

reliable, method of getting starting values for the X vector was found and that is the

subject of the next section.

2.3 _ SGOS FLOW SOLVER

The Shuttle Ground Operations Simulator (SGOS) is a software system used for

training, testing and validation at KSC. Beginning in the summer of 1979 an effort

was made by Dr. Roy Jones and Dr. Richard Ingle of UCF to implement a flow solver

in the SGOS environment [4]. Mathematically, the technique they implemented was

that of using a piecewise linear approximation to the directed square root function in

order to iteratively find an approximate solution to the system of equations

V

U

498

% ;
',,._..,/ introduced in section 2.1. In other words, each appearance of Dv_ in the earlier

system of equations is replaced by a linear function of the form m*X + b where the
value of the slope m and the intercept b depend upon the actual value of X. We thus

replace the original non-linear system by a linear system of the form

A I._ *f(Pl-Pl) + A la *f(PI-P2) + "'"+ A l.,, *f(P1-P,) = 0

A2,, , f(p2-Pl) + A2, 2 . f(P2-P2) + ... + A2," . f(P2-P,,) = 0

A m.l *f(Pm-Pl) + A m;2*f(Pm-P2) + "'" + Am_, *f(Pm-P,) = 0

where f(x) is a linear function whose slope and intercept depend upon x. The

algorithm is as follows:

1) Divide the X axis into a small number of intervals, for example, six
intervals. Within each interval determine the appropriate slope

and intercept value to approximate the directed square root within
that interval.

2) Generate random or heuristically chosen starting values for the

unknowns Xl, x2,...,x,.
3) Repeat the following for some fixed number of iterations or until

all the x_ values stay within the same x-axis interval for two
consecutive iterations:

3a) Construct a linear system using the current xi

approximations as appropriate. The system will be of the

form A(6x)=B where the A and B matrices are derived

from known coefficients in the system. The 6x values

represent changes to be applied to the unknown xi's.

3b) Solve the linear system for the 6x values using whatever

technique is available.

3c) Update the xi vector values.

4) Test the current solution values for x_, x2,...,x, by plugging these
values into the system and determining the error. Each equation's

left and right hand side values should be 0.

5) If the solution obtained is acceptable then terminate, otherwise go
back to step 1 and subdivide the X axis into a greater number of
intervals.

This algorithm rapidly obtains approximate solutions to the original system of non-

linear equations. Acceptable solutions are usually obtained in a few dozen iterations

using from six to ten sub-intervals of the X-axis.

499

For our purposes we implemented the above algorithm with several refinements and

enhancements. For example, our starting X values are chosen to be within the known

upper and lower bounds of the external pressures of the pipe network. We use a

very efficient LU decomposition technique to solve the linear system as mentioned in

step 3b. Our implementation also generates solutions with differing numbers of sub-

intervals and selects the solution with the smallest total error in the system, an

improvement over the SGOS version of the algorithm.

We use this algorithm in two ways. First of all, we use it to compute starting values

to be utilized by the multi-dimensional Newton's method. Secondl_ we retain the

SGOS solution values in the unlikely event that Newton's method does not converge

or will not work due to being given a singular matrix to solve. Such situations have

not occurred in our testing of Newton's method to date but _the availability of the

SGOS solution values is, nonetheless, felt to be an important fail back.

2.4 IMPLEMENTATION OF THE FLOW SOLVER

The flow solver was implemented in approximately fifteen hundred lines of C++

code. The basic outline of the program is as follows:

1) Gather vectors containing the known pressures, known

admittances, and optionally, static head pressures. These inputs

can be obtained interactively from the keyboard or passed as

parameters from the KATE system.

2) Generate starting values for the unknown pressures by averaging

the external known pressures. The known external pressures give

us useful upper _d lower bounds fo r the unknown pressures.

3) Use our implementation of the piecewise linear approximation

concept, as in SGOS, to get approximately correct starting values

for the unknown pressures.

4) Use the multi-dimensional Newton's method approach to obtain

a highly accurate solution for the unknown pressures.

5) In the unlikely event of a problem in step (4), return the

approximate solutions obtained in step (3), otherwise return or

report the best solution found.

Although there are many steps to this process, the program returns extremely good

solutions, with errors less than 10 12, very quickly, on the size of systems expected to

be encountered in practice.

It is instructive to compare the results obtained from the SGOS algorithm with those

obtained in step (4) above from Newton's method. In typical experiments, the SGOS

values are plus or minus i% of the value obtained by Newton's method. This

50O

X,..._)

statement causes one to ask whether or not the additional work of using Newton's

method is necessary. In Figure 2-3 we tabulate the results of applying both the SGOS

algorithm and the complete Newton's method algorithm above to the example flow

system from Figure 2-2. The values have been rounded to two decimal places for

ease of reporting. Though randomly selected, these results are typical of those found

repeatedly when comparing the two algorithms. Note that the absolute differences
between the SGOS solutions and the Newton's method solutions are typically in the

third or fourth significant digit. However, when the pressure values are used to

calculate flows, these differences become greatly magnified. The non-linear nature of

the flow network and the interdependent nature of the overall network result in very

small errors in unknown pressures translating to sizable errors in flow. Given that

these calculations of unknown pressures may be repeated hundreds or thousands of

times by KATE during the LOX loading period, one begins to see that even small flow
errors could cause the flow model to differ considerably from the actual flow by the

end of the simulation period.

-,,._.1

Unknown

Pressure

SGOS

Solution

41.58

SGOS

Flow Error

-2.08

Newton's Method

Solution

41.69

Newton's Method

Flow Error

<10 -13

<10 -Is2 25.93 0.54 25.96

3 20.48 -0.19 20.52 < 10 13

4 19.80 3.25 19.84 <10 -13

20.925 21.05

Total Abs Error

-6.47

12.53

<10 "13

<10 "12

Figure 2-3. Comparison of Results

The flow solver code has been interfaced with KATE and testing will soon be

underway using recorded LOX loading data from previous launches.

2.5 FUTURE WORK

The flow solver program meets all the design requirements originally set out. The

only major enhancement that may be needed is the ability to work with pipe

networks with a more general topology than the "straight-line" systems now targeted.

As stated previous134 the current design assumes that each interior unknown pressure

M._M

501

is connected to exactly three other pressures and at least one of those is always a

known exterior pressure. Solving more general classes of networks will require work

primarily in the data interface and in implementing a technique for collapsing clusters

of connected unknown pressures into a single unknown. The data interface may

require some type of adjacency matrix or adjacency list to represent the

interconnections of the network. Performance of the program will also degrade

markedly because Newton's method will require solving general NxM matrices rather

than the current tridiagonal systems.

502

III

THE EMACS KATE MODE

3.1 DESIGN SPECIFICATIONS

Constructing a KATE knowledge-base is a critically important and time-consuming

task. Starting with the predefined top-level KATE classes and a predefined library

of mid-level components, the model builder proceeds along the following lines:

o Gather together schematics and engineering documents for the

physical system to be modeled.

o Study the target system to gain an understanding of its principal

components and their interactions.

o Determine whether or not the existing middle level component

classes are adequate for the system to be modeled. If not, add

new component classes. This requires at least some C++ code to
be written.

o Construct database (.db) files for the components, commands and

measurements in the physical system. Real world systems may

contain over one hundred such files, each containing dozens or
hundreds of entries.

o Specify the interconnections among the components in the
database files.

o Construct a project (.kb) file to be used to coordinate the

processing of all the various files which go into making the end

product, a "flatfile" which can be loaded into KATE.

o Add pseudo objects to represent logical functions of groups of

components in the system.

o Run a "make" program to compile together all the various database

files describing a model and create a single flatfile from them.

Until now there have been no software tools available to assist the KATE model

builder Most of the work is done using a text editor, frequently Emacs, and there is

no way for the model builder to view the model under construction except as a

collection of text files. We have designed and implemented a number of

enhancements to the Emacs editor to make the job of the model builder easier

The goals for this work were as follows:

o Design and implement an improved editing environment for

building KATE models. The more the system knows about the

structure of knowledge bases, the better.

503

o No editing abilities should be forsaken in this environment. That

is, the environment must have all the features of a sophisticated

editor such as cut and paste, configurable pull-down menus,

mousing abilities, undo, backup, and rollback.
o The editing environment should be portable across all the

platforms that KATE runs on. That currently means Unix, Linux
and Microsoft Windows.

o The editing environment must be a stand-alone program. It

should not be necessary to have KATE installed or operating on

the machine where editing is being done.

o The editor should be able to construct graphical diagrams showing
the interconnections between various components in a complete or

partially complete model.

o The editing environment must be able to use the organizational

information present in project (.kb) files to assist the model builder
in organizing complete models and generating flatfiles for them.

o The editing environment should not be built on top of a
commercial editor product. When KATE is made available to the

general public this editing environment should be freely
distributable.

3.2 IMPLEMENTATION

After considering several possible alternatives, including developing an editing

environment from scratch, and considering the limited time available to the

investigator, it was decided that most of the design goals would best be met by

implementing an editing environment as an extension to the GNU-Emacs editor.

Emacs is arguably the world's most sophisticated and powerful text-editing
environment. It is implemented primarily in Emacs-LISP, a subset of Common LISP

and is, in fact, as much a programming environment as a text editor. Recent versions

of Emacs support menus, mouse operations, practically unlimited undo capabilities

and can even take advantage of some of the features of the X-Windows system.

Emacs runs on practically all Unix platforms and is now available for DOS and
Microsoft Windows. And it is distributed at no cost to the end user.

In the Emacs terminology we elected to implement an Emacs "major-mode". We have

programmed Emacs to automatically recognize when database (.db), project (.kb), or
flatfile (.flatfile) files are loaded and make the transition into what we call "kate-

mode". One of the primary features of this mode is that tables called tag tables and

tables of input connections are automatically constructed as the database files and
flatfiles are loaded. These tables form the basis for what might be thought of as a

cross-referencing feature of the Emacs environment, called tagging. No matter what
file the model builder is editing, he/she can, with only a few keystrokes, quickly find

V

504

x._..,
the file and section of code where an object is defined. This feature can be used not

only for matching object names exactly but also for partial, substring_ or apropos
matches.

A second major feature of kate-mode is the ability to quickly generate simple

hierarchical tree drawings representing the connections between an arbitrary object

and its upstream and downstream neighbors. This feature works very rapidly

because the requisite connection information is constructed once as the files in a

project are loaded and then stored in a buffer for later access.

Another kate-mode feature is the ability to compile a collection of database files into

a flatfile under control of a project file from within the editor. This process is

currently done by a LISP program run on a Symbolics system, requiring several

sequential steps to be carried out by the model builder on different platforms.

Making this compilation process an integral part of the editor will in itself save a

great deal of effort.

There are a number of other features of kate-mode which are expected to make it very

useful. For example, the model builder need not be aware of any of the LISP

programming being used to make his/her environment easier to use. Much of the

operation of kate-mode occurs automatically and is totally invisible to the end user.

The non-automatic features can be assigned to Control or Escape key sequences or can

be utilized by typing in the name of a function which will then prompt the user for

any necessary parameters. The system also attempts to save as much tag and
connection information as it can between editor runs in order to save time when

restarting or continuing an editing session.

3.3 FUTURE WORK

The current version of kate-mode is approximately fourteen hundred lines of Emacs-

LISP code. Additional features can be added by anyone familiar with LISP

programming. Incorporating new features can be done in a modular and

straightforward way without a negative impact on existing features. We feel that the

original design goals have, for the most part, been achieved. The display of the input

connection relationships among objects is perhaps the weakest aspect of the current

implementation. The information to create the diagrams has been extracted and can

be accessed very quickly but it is just very difficult to display structural relationships

using only character graphics. The information could be passed to a program running

externally to Emacs which would display the connections graphically in a separate

window. However, we have not had the time to pursue this idea. Ideally, the model

builder should be able to manipulate the graphical representation, for example

adding or modifying input connections, and have these actions reflected in the

corresponding database files. This too could be done using Emacs as the "control

5O5

center" to modify the underlying text files with actions performed in another process

supporting a graphical interface, but we have not yet looked into the details.
V

506

l:ll

IV

REVIEW

We have presented the design criteria and described the implementations of the

two software projects undertaken this summer. In the case of the flow solver and

the editor enhancements we feel that we have made very useful enhancements to

both the development and application environments for KATE. We believe both

tools will prove to be of great utility to future KATE users.

507

[11

[2]

[3]

[41

REFERENCES

Steven L. Fulton and Charles O. Pepe, "An Introduction to Model-Based

Reasoning", AI Expert, January 1990, pp. 48-55.

Charles O. Pepe, et. al., KATE - A Project Overview and Software Description,

Boeing Aerospace Report, Boeing Aerospace Operations, Mail Stop FA-78,

Kennedy Space Center, Florida.

Burden, R.L, Faires, J.D., and Reynolds, A.C., Numerical Analysis, Prindle, Weber,

and Schmidt, Boston, MA, 1981.

Ingle, R.M., Modeling Fluid Networks Using the SGOS Flow Solver, Lockheed Space

Operations Technical Report, 35SM-FS01-06, August, 1984.

508

l11

